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Note on notation: When I use the symbol ⊂, it does not imply that the subset is proper.
In writing A ⊂ X, I mean only that a ∈ A =⇒ a ∈ X, leaving open the possibility that
A = X. I do not use the symbol ⊆.

Proposition 0.1 (Exercise A.3). Let X, Y be topological spaces and let f : X → Y be
continuous. Let (pi)

∞
i=1 be a sequence in X such that pi → p. Then f(pi)→ f(p) in Y .

Proof. We need to show that for every neighborhood V of f(p), there exists N ∈ N such
that f(pi) ∈ V for all i ≥ N . Let V be a neighborhood of f(p). By continuity of f , f−1(V )
is an (open) neighborhood of p. Since pi → p, there exists N such that pi ∈ f−1(V ) for
i ≥ N . Thus f(pi) ∈ f(f−1(V )) = V for all i ≥ N , so f(pi)→ f(p).

Proposition 0.2 (Exercise A.11). Let X be a Hausdorff space. Then each finite subset of
X is closed and each convergent sequence in X has a unique limit.

Proof. Let A ⊂ X be a finite subset. We will show that X \ A is open. Let x ∈ X \ A. By
the Hausdorff property, for each a ∈ A, there exist disjoint neighborhoods Ua, Va such that
a ∈ Ua, x ∈ Va with Ua ∩ Va = ∅. Then let V = ∩a∈AVa. Since A is finite, V is an open
neighborhood of x. V must also be disjoint from A, since for each a ∈ A, there is a Va not
including that particular a. Thus V is a neighborhood of x contained in X \A, hence X \A
is open, so A is closed.

Let (pi)
∞
i=1 be a convergent sequence in X. Suppose as an RAA hypothesis that p, q are

distinct limits for pi, that is, pi → p and pi → q and p 6= q. By the Hausdorff property,
there exist neighborhoods P,Q with p ∈ P, q ∈ Q,P ∩Q = ∅. By the convergence of pi to p
and q, there exist Np and Nq such that i ≥ Np =⇒ pi ∈ P and i ≥ Nq =⇒ pi ∈ Q. Let
N = max{Np, Nq}. Then for i ≥ N , we have pi ∈ P and pi ∈ Q. But P ∩Q = ∅, so this is a
contradiction. Thus we reject the RAA hypothesis and conclude that pi cannot have more
than one limit.

Lemma 0.3 (for Exercise A.13). Let X be a topological space and let A ⊂ X. Then A = A
if and only if A is closed.

Proof. Suppose that A ⊂ X is closed. By definition,

A =
⋂
α

Aα
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where Aα is a closed set with A ⊂ Aα. Since A is closed, A = Aα for some α, so A ⊂ A.
Since A is contained in each Aα, A ⊂ A. Hence A = A.

Conversely, suppose that A = A. Since A is an intersection of closed sets, its complement
is a union of open sets, so its complement is closed, so A is closed. Hence A is closed.

Lemma 0.4 (for Exercise A.13). Let X be a topological space and let A ⊂ X. Then A = IntA
if and only if A is open.

Proof. Suppose that A ⊂ X is open. Then A is an open set contained within A, so A ⊂ IntA.
Since IntA is a union of sets contained within A, we have IntA ⊂ A. Thus A = IntA.

Conversely, suppose that A = IntA. Since IntA is a union of open sets, it is open, thus
A is open.

Proposition 0.5 (Exercise A.13). Let X be a first-countable space, let A ⊂ X, and let
x ∈ X.

1. x ∈ A if and only if x is a limit of a sequence in A.

2. x ∈ IntA if and only if every sequence in X converging to x is eventually in A.

3. A is closed in X if and only if A contains every limit of every convergent sequence in
A.

4. A is open in X if and only if every sequence in X converging to a point in A is
eventually in A.

Proof. First we prove (1). Let x ∈ A. If x ∈ A, then (x, x, . . .) is a sequence in A converging
to x. If x 6∈ A, then x ∈ A \ A. Since X is first-countable, there is a countable collection
Bx of neighborhoods of x such that every neighborhood of x contains at least one B ∈ Bx.
We claim that each neighborhood Bn ∈ Bx intersects A. If not, then (Bn)c is a closed set
containing A with x 6∈ (Bn)c, but this is impossible since x ∈ A. We order the countable
neighborhoods of x as {Bn}∞n=1. Then for each k ∈ N, we choose

xk ∈

(
k⋂

n=1

Bn

)
∩ A

We claim that xk → x. Let U be a neighborhood of x. Since Bx is a neighborhood basis of
x, there exists N such that x ∈ BN ⊂ U . Then xn ∈ BN for all n ≥ N , so xk → x.

Now we show the other direction of (1). Suppose that x ∈ X, and there exists a sequence
(xn)∞n=1 in A with xn → x. Let C be any closed set with A ⊂ C, and suppose that x 6∈ C.
Then x ∈ Cc, so Cc is an open neighborhood of x. Since xn → x, there exists N ∈ N such
that n ≥ N implies xn ∈ Cc. However, xn ∈ A ⊂ C for all n, so this is a contradiction.
Hence x ∈ C, for all closed sets C containing A. Thus x is in the intersection over all such
closed sets, which is precisely A.

Now we prove (2). First suppose that x ∈ IntA. Then there exists an open set U with
x ∈ U ⊂ A. Let xn be a sequence in X that converges to x. Then there exists N ∈ N such
that n ≥ N implies xn ∈ U ⊂ A, so xn is eventually in A.
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Now we prove the other direction of (2). Suppose that every sequence in X converging
to x is eventually in A. Let Bx = {Bn}∞n=1 be an ordered, countable neighborhood basis for
x. For k ∈ N, choose an xk ∈

⋂k
n=1Bn, so xk → x. Then by hypothesis, xk is eventually in

A. We claim that for some k,
⋂k
n=1Bn ⊂ A. If not, then we can construct a sequence by

choosing yk ∈
(⋂k

n=1Bn

)
\ A. For this sequence (yk), we have yk → x, but yk 6∈ A for all

k, which contradicts the hypothesis (that all sequences converging to x are eventually in A).
Thus

⋂k
n=1Bn ⊂ A for some k, and this intersection in an open neighborhood of x contained

within A. Hence x ∈ IntA.
Now we prove (3). Suppose that A ⊂ X is closed. By the above lemma, A = A. Then

by (1), x ∈ A if and only if x is a limit of a sequence of points in A, so A contains every
limit of every convergent sequence of points in A.

Conversely, if A contains every limit of every convergent sequence in A, then A ⊂ A.
Then if A =

⋂
αAα, we have

⋂
αAα ⊂ A. Since A ⊂ Aα for each α, then A ⊂

⋂
αAα, so we

have two-way containment, and hence A = A. Then by the above lemma, A is closed.
Now we prove (4). Suppose that A is open. Then A = IntA by the above lemma. Let

x ∈ A. Then by (2), every sequence in X converging to x ∈ A is eventually in A.
Conversely, suppose that for x ∈ A, every sequence in X converging to x is eventually in

A. Then by (2), x ∈ IntA. Thus A ⊂ IntA, so A = IntA since we know that IntA ⊂ A.
Hence A is open.

Proposition 0.6 (Exercise A.15). The set of all open balls in Rn with rational radius and
centers with rational coordinates is a countable basis for Rn with the Euclidean metric topol-
ogy. Thus Rn is second-countable.

Proof. We need to show that every open subset of Rn is a union of a collection of such rational
balls. (Clearly this basis is countable.) Let U ⊂ Rn be open. Then there exists r > 0 such
that B(x, r) ⊂ U . There exists some q ∈ Q with 0 < q < r/2, so B(x, q) ⊂ B(x, r) ⊂ U .

Along each dimension from i = 1 to i = n, there is a line segment of the form
(xi − q/

√
n, xi + q/

√
n) contained in B(x, q) (note that the superscript i is an index, not an

exponent). From each interval (xi − q/
√
n, xi + q/

√
n) we choose a pi ∈ Q, and construct

p = (p1, p2, . . . pn) ∈ Qn ⊂ Rn. We claim that x ∈ B(p, q). Notice that

||x− p|| =

√√√√ n∑
i=1

(xi − pi)2 <

√√√√ n∑
i=1

(q/
√
n)2 =

√√√√ n∑
i=1

q2/n =
√
q2 = q

So we have ||x − p|| < q, which is equivalent to x ∈ B(p, q). We also claim that B(p, q) ⊂
B(x, r). Since q < r/2, the diameter of B(p, q) is less than r, and since B(p, q) contains x, it
cannot contain any point of a distance more than r away from x. ThusB(p, q) ⊂ B(x, r) ⊂ U .

Thus for every open set U ⊂ Rn, and every x ∈ U , there is a ball B(px, qx) with rational
radius qx and rational center coordinates (p1, . . . pn) with x ∈ B(px, qx) ⊂ U . We can then
write U as

U =
⋃
x∈U

B(px, qx)
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Thus every open subset of Rn can be written as a union of balls with rational radius and
rational coordinates, so these balls form a (countable) basis for Rn. Hence Rn is second-
countable.

Proposition 0.7 (Exercise A.42b). Every path-connected space is connected.

Proof. Let X be path-connected. Suppose that X is not connected. Then there exist disjoint
open sets U, V whose union is X. Choose x ∈ U, y ∈ V . Since X is path-connected, there is
a path γ : [0, 1] → X with γ(0) = x, γ(1) = y. By continuity of γ, γ−1(U) and γ−1(V ) are
open in [0, 1]. We also know that γ−1(U) ∪ γ−1(V ) = [0, 1] and γ−1(U) ∩ γ−1(V ) = ∅. Since
0 ∈ γ−1(U) and 1 ∈ γ−1(V ), neither is empty. But this implies that [0, 1] is disconnected,
which is false. Hence X must be connected.
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