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Note on notation: When I use the symbol C, it does not imply that the subset is proper.
In writing A C X, I mean only that a € A = a € X, leaving open the possibility that
A = X. I do not use the symbol C.

Proposition 0.1 (Exercise A.3). Let X,Y be topological spaces and let f : X — Y be
continuous. Let (p;)52, be a sequence in X such that p; — p. Then f(p;) — f(p) inY.

Proof. We need to show that for every neighborhood V of f(p), there exists N € N such
that f(p;) € V for all i > N. Let V be a neighborhood of f(p). By continuity of f, f~1(V)
is an (open) neighborhood of p. Since p; — p, there exists N such that p; € f~1(V) for

i > N. Thus f(p;) € f(f7(V)) =V forall i > N, so f(p;) = f(p)- o

Proposition 0.2 (Exercise A.11). Let X be a Hausdorff space. Then each finite subset of
X is closed and each convergent sequence in X has a unique limait.

Proof. Let A C X be a finite subset. We will show that X \ A is open. Let z € X \ A. By
the Hausdorff property, for each a € A, there exist disjoint neighborhoods U,, V, such that
a € U,,v €V, with U, NV, = 0. Then let V = NgeaV,. Since A is finite, V is an open
neighborhood of . V must also be disjoint from A, since for each a € A, there is a V,, not
including that particular a. Thus V' is a neighborhood of = contained in X \ A, hence X \ A
is open, so A is closed.

Let (p;)2; be a convergent sequence in X. Suppose as an RAA hypothesis that p, ¢ are
distinct limits for p;, that is, p; — p and p; — ¢ and p # q. By the Hausdorff property,
there exist neighborhoods P, Q with p € P,q € Q, PN Q = (). By the convergence of p; to p
and g, there exist N, and N, such that : > N, = p, € Pand¢ > N, = p; € Q. Let
N = max{N,, N,}. Then for i > N, we have p; € P and p; € Q. But PNQ = (, so this is a
contradiction. Thus we reject the RAA hypothesis and conclude that p; cannot have more
than one limit. O]

Lemma 0.3 (for Exercise A.13). Let X be a topological space and let A C X. Then A= A
if and only if A is closed.

Proof. Suppose that A C X is closed. By definition,
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where A, is a closed set with A C A,. Since A is closed, A = A, for some «, so A C A.
Since A is contained in each A,, A C A. Hence A = A.

Conversely, suppose that A = A. Since A is an intersection of closed sets, its complement
is a union of open sets, so its complement is closed, so A is closed. Hence A is closed. O

Lemma 0.4 (for Exercise A.13). Let X be a topological space and let A C X. Then A =Int A
if and only if A is open.

Proof. Suppose that A C X is open. Then A is an open set contained within A, so A C Int A.

Since Int A is a union of sets contained within A, we have Int A C A. Thus A = Int A.
Conversely, suppose that A = Int A. Since Int A is a union of open sets, it is open, thus

A is open. O]

Proposition 0.5 (Exercise A.13). Let X be a first-countable space, let A C X, and let
x e X.

1. x € A if and only if x is a limit of a sequence in A.
2. x € Int A if and only if every sequence in X converging to x is eventually in A.

3. A is closed in X if and only if A contains every limit of every convergent sequence in
A.

4. A is open in X if and only if every sequence in X converging to a point in A is
eventually in A.

Proof. First we prove (1). Let # € A. If x € A, then (z,z,...) is a sequence in A converging
tox. If v ¢ A, then v € A\ A. Since X is first-countable, there is a countable collection
B, of neighborhoods of x such that every neighborhood of = contains at least one B € B,.
We claim that each neighborhood B, € B, intersects A. If not, then (B,)¢ is a closed set
containing A with = & (B,)¢, but this is impossible since x € A. We order the countable
neighborhoods of z as {B,}22 ;. Then for each k£ € N, we choose

k

T € <m Bn> NA
n=1

We claim that x; — x. Let U be a neighborhood of x. Since B, is a neighborhood basis of

x, there exists NV such that x € By C U. Then z,, € By for alln > N, so z;, — .

Now we show the other direction of (1). Suppose that x € X, and there exists a sequence
(x,)22, in A with x, — . Let C be any closed set with A C C, and suppose that z ¢ C.
Then z € C° so C°¢ is an open neighborhood of x. Since z, — x, there exists N € N such
that n > N implies x,, € C°. However, x, € A C C for all n, so this is a contradiction.
Hence x € C, for all closed sets C' containing A. Thus x is in the intersection over all such
closed sets, which is precisely A.

Now we prove (2). First suppose that x € Int A. Then there exists an open set U with
r €U C A. Let z,, be a sequence in X that converges to x. Then there exists N € N such
that n > N implies z,, € U C A, so z,, is eventually in A.



Now we prove the other direction of (2). Suppose that every sequence in X converging
to x is eventually in A. Let B, = {B,}22, be an ordered, countable neighborhood basis for
x. For k € N, choose an z}, € ﬂizl B, so z; — x. Then by hypothesis, x} is eventually in
A. We claim that for some k, ﬂzzl B, C A. If not, then we can construct a sequence by

choosing y € (ﬂflzl Bn> \ A. For this sequence (yx), we have yp — x, but yx ¢ A for all

k, which contradicts the hypothesis (that all sequences converging to x are eventually in A).
Thus ﬂizl B,, C A for some k, and this intersection in an open neighborhood of = contained
within A. Hence = € Int A.

Now we prove (3). Suppose that A C X is closed. By the above lemma, A = A. Then
by (1), x € A if and only if z is a limit of a sequence of points in A, so A contains every
limit of every convergent sequence of points in A.

Conversely, if A contains every limit of every convergent sequence in A, then A C A.
Then if A = N, Ao, we have (), Ao C A. Since A C A, for each a, then A C (), Aq, s0 we
have two-way containment, and hence A = A. Then by the above lemma, A is closed.

Now we prove (4). Suppose that A is open. Then A = Int A by the above lemma. Let
x € A. Then by (2), every sequence in X converging to = € A is eventually in A.

Conversely, suppose that for x € A, every sequence in X converging to x is eventually in
A. Then by (2), z € Int A. Thus A C Int A, so A = Int A since we know that Int A C A.
Hence A is open. O

Proposition 0.6 (Exercise A.15). The set of all open balls in R™ with rational radius and
centers with rational coordinates is a countable basis for R™ with the Fuclidean metric topol-
ogy. Thus R™ is second-countable.

Proof. We need to show that every open subset of R™ is a union of a collection of such rational

balls. (Clearly this basis is countable.) Let U C R™ be open. Then there exists » > 0 such

that B(x,r) C U. There exists some ¢ € Q with 0 < ¢ < /2, so B(z,q) C B(z,r) C U.
Along each dimension from 7 = 1 to ¢ = n, there is a line segment of the form

(z' — q/+/n,x" 4+ q/+/n) contained in B(z,q) (note that the superscript i is an index, not an

exponent). From each interval (z° — q/\/n, 2" + q/\/n) we choose a p' € Q, and construct

p=(pt,p?...p") € Q" C R". We claim that x € B(p, q). Notice that

n n

e —pll = (| D (@ —p)2 < | (¢/v/n)? = Zq2/n:\/?:q
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So we have ||z — p|| < ¢, which is equivalent to x € B(p,q). We also claim that B(p,q) C
B(z,r). Since ¢ < r/2, the diameter of B(p, q) is less than r, and since B(p, q) contains z, it
cannot contain any point of a distance more than r away from x. Thus B(p,q) C B(xz,r) C U.

Thus for every open set U C R", and every x € U, there is a ball B(p, ¢,) with rational
radius ¢, and rational center coordinates (p',...p") with x € B(p,,q.) C U. We can then
write U as

U= Bp: )

zeU



Thus every open subset of R™ can be written as a union of balls with rational radius and
rational coordinates, so these balls form a (countable) basis for R". Hence R" is second-
countable. ]

Proposition 0.7 (Exercise A.42b). Every path-connected space is connected.

Proof. Let X be path-connected. Suppose that X is not connected. Then there exist disjoint
open sets U,V whose union is X. Choose x € U,y € V. Since X is path-connected, there is
a path v : [0,1] — X with y(0) = z,7(1) = y. By continuity of v, y~}(U) and v~ '(V) are
open in [0,1]. We also know that v }(U) U~ (V) = [0,1] and v (U) Ny~ (V) = 0. Since
0 €~y YU) and 1 € v~ 1(V), neither is empty. But this implies that [0,1] is disconnected,
which is false. Hence X must be connected.
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